The table below contains integration results used throughout this notes. Indefinite integrals ∫xndx∫udv∫eαxdx∫ln(x)dx∫sin2(αx)=n+11xn+1=uv−∫vdu=a1eαx=x(ln(x)−1)=2x−4a1sin(2ax)Integration by parts where ln(x):=loge(x) is the natural logarithm. Integrals over R ∫Re−αx2=απ Integrals over R+ ∫R+e−αx2∫R+xne−αx2=21απ=(...)