Describe the variables present via their domains and images
Describe the equations, ideally
Constants
⎩⎨⎧ΩkBTDjλjjSet of Molecules availableThermal energy at temperature TDiffusion coefficient for the jth membrane protein in the appropriate membraneCurvature of binding energy well for jth complexI think this is an index for membrane complexes?
Comparing the variables/constants with the equations above, it seems like the membrane complexes j might be in the set Ai, Bi, TM, T. It is unclear what these mean.
Variables
⎩⎨⎧F:CT:CM:CAi:CBi:CTM:Ci:CTt:z:kon:koff:ki:k−i:z:zj:t:γ:κ:ζ:M:x,y,t↦Rx,y,t↦Rx,y,t↦Rx,y,t↦R,i∈Ωx,y,t↦R,i∈Ωx,y,t↦Rx,y,t↦R,i∈Ωx,y,t↦Rx,y,t↦RR↦RR↦RR↦R,i∈ΩR↦R,i∈Ωx,y,z↦R???↦???t↦R???↦??????↦??????↦??????↦???ForceTCR ConcentrationMHC-peptide ConcentrationConcentration of the ith adhesian moleculeConcentration of the ith complementary ligandConcentration of the TCR-MHC peptide complexConcentration of the complex formed between Ai and BiConcentration of triggered TCRsLocal intermembrane separationOn rate for TCT/MHC peptide bindingOff rate for TCT/MHC peptide bindingOn rate for the complexation of Ai and BiOff rate for the complexation of Ai and BiLocal intermembrane separationNatural length of jth protein complexTime (identity function when seen as a variable)Interfacial tension of cell membraneBending rigidity of cell membraneThermal noisePhenomenological constant for membrane response to free energy changes
Equations
⎩⎨⎧F∂t∂CT∂t∂CM∂t∂CAi∂t∂CBi∂t∂CTM∂t∂Ci∂t∂CTt∂t∂z=λT∫R2CTM⋅[z−zTM]2dxdy+∑i2λi∫R2Ci⋅[z−zi]2dxdy+21∫R2[γ(∇z)2+κ(∇2z)2]dxdy=DT∇2CT−kon(z)CTCM+koff(1−P)CTM+ζT=DM∇2CM−kon(z)CTCM+koffCTM+ζM=DAi∇2CAi−ki(z)CAiCBi+k−iCi+ζAi=DBi∇2CBi−ki(z)CAiCBi+k−iCi+ζBi=DTM[∇2CTM+kBT1∇⋅CTM∇∂CTM∂F]+kon(z)CTCM−koffCTM+ζTM=Di[∇2Ci+kBT1∇⋅Ci∇∂Ci∂F]+ki(z)CAiCBi−k−iCi+ζi=DT∇2CTt+PkoffCTM−ktCTt+ζTt=−M∂z∂F+ζWhat is P ? Shouldn’t we have koff(z) instead?Shouldn’t koff depend on z ?What is ζAi ? Shouldn’t k−i depend on z ?What is ζBi ? Shouldn’t k−i depend on z ?How is ∂CTM∂F calculated?What is P ? What is ζTt ?
I assume that:
All the “unknown” ζX are independent noise functions