We will find an upper bound for the Ground state energy by calculating the Energy for the ansatz given by e2−αx2.
The associated Hamiltonian is given by H=−2mℏ2dx2d2+λx4. We perform the Wave function energy calculation as E(α)=∫Re2−αx2(−2mℏ2dx2d2+λx4)e2−αx2dx/∫Re−αx2dx.
We will split the calculations into 2 parts. We start with ∫Re2−αx2(dx2d2)e2−αx2dx:
∫Re2−αx2(dx2d2)e2−αx2dx=∫Re2−αx2dxd(−αxe2−αx2)dx=−α∫Re2−αx2dxd(xe2−αx2)dx=−α∫Re2−αx2(e2−αx2+x(−αx)e2−αx2)dx=−α∫Re−αx2dx+α2∫Rx2e−αx2dx=−αCα+α2∫Rx2e−αx2dx=−αCα+α2∫Rx2−2αx1de−αx2=−αCα−2α∫Rxde−αx2=−αCα+2α∫Re−αx2dx=−αCα+2αCα=−2αCαTaking −α out of the integralBy the product ruleSeparating into 2 integralsSetting Cα:=∫Re−αx2dxMoving constants out of the integralIntegration by partsSetting Cα:=∫Re−αx2dx
Secondly we simplify ∫Rx4e−αx2dx:
∫Rx4e−αx2dx=∫Rx42αx−1de−αx2=−2α1∫Rx3de−αx2=2α1∫Re−αx2dx3=2α1∫R3x2e−αx2dx=2α3∫Rx2e−αx2dx=2α3∫Rx22αx−1de−αx2=−4α23∫Rxde−αx2=4α23∫Re−αx2dx=4α23CαIntegration by partsIntegration by partsSetting Cα:=∫Re−αx2dx
Hence
E(α)=∫Re2−αx2(−2mℏ2dx2d2+λx4)e2−αx2dx/∫Re−αx2dx=(−2mℏ2∫Re2−αx2(dx2d2)e2−αx2dx+λ∫Rx4e−αx2dx)/Cα=(2m−ℏ22−αCα+λ4α23Cα)/Cα=2m−ℏ22−α+λ4α23=4mℏ2α+4α23λSubstituting the results aboveCancelling out the Cα terms
=
Since we want to find an upper bound for the Ground stateEnergyE0, we want to minimize E(α), using the standard method:
0ℏ2α3α0=dαdE(α)=dαd(4mℏ2α+4α23λ)=4mℏ2−2α33λ⇓=6λm⇓=(ℏ26λm)31Relabelling α as α0 to disguish it as a minimum
We get the upper bound E(α0)=4mℏ2α0+4α023λ=83(m26ℏ4λ)31.