Keywords: Mathieu Equation
Derivation
We want to derive the Hamiltonian H^=4Ec(a^1+a^1+a^1a^1+a^2+a^2+a^2a^2)−NEJ(a^1+a^2+a^2+a^1) from H^=∫Φ†[−2mℏ∇2+Vext+2gΦ†Φ]Φdr
We start from
H^=∫Ψ†[−2mℏ∇2+Vext+2gΨ†Ψ]Ψdr=∫(Φ1(r)a1+Φ2(r)a2)†[−2mℏ∇2+Vext+2g(Φ1(r)a1+Φ2(r)a2)†(Φ1(r)a1+Φ2(r)a2)](Φ1(r)a1+Φ2(r)a2)dr=∫(Φ1∗(r)a1†+Φ2∗(r)a2†)[−2mℏ∇2+Vext+2g(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)](Φ1(r)a1+Φ2(r)a2)dr=a1†∫Φ1∗(r)[−2mℏ∇2+Vext+2g(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ1(r)dra1+a1†∫Φ1∗(r)[−2mℏ∇2+Vext+2g(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ2(r)dra2+a2†∫Φ2∗(r)[−2mℏ∇2+Vext+2g(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ1(r)dra1+a2†∫Φ2∗(r)[−2mℏ∇2+Vext+2g(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ2(r)dra2=a1†∫Φ1∗(r)[−2mℏ∇2+Vext]Φ1(r)dra1+a1†2g∫Φ1∗(r)[(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ1(r)dra1+a1†∫Φ1∗(r)[−2mℏ∇2+Vext]Φ2(r)dra2+a1†2g∫Φ1∗(r)[(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ2(r)dra2+a2†∫Φ2∗(r)[−2mℏ∇2+Vext]Φ1(r)dra1+a2†2g∫Φ2∗(r)[(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ1(r)dra1+a2†∫Φ2∗(r)[−2mℏ∇2+Vext]Φ2(r)dra2+a2†2g∫Φ2∗(r)[(Φ1∗(r)a1†+Φ2∗(r)a2†)(Φ1(r)a1+Φ2(r)a2)]Φ2(r)dra2=∫Φ1∗(r)[−2mℏ∇2+Vext]Φ1(r)dra1†a1+a1†2g∫Φ1∗(r)[Φ1∗(r)a1†Φ1(r)a1]Φ1(r)dra1+∫Φ1∗(r)[−2mℏ∇2+Vext]Φ2(r)dra1†a2+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ1(r)dra2†a1+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ2(r)dra2†a2+a2†2g∫Φ2∗(r)[Φ2∗(r)a2†Φ2(r)a2]Φ2(r)dra2=∫Φ1∗(r)[−2mℏ∇2+Vext]Φ1(r)dra1†a1+∫Φ1∗(r)[−2mℏ∇2+Vext]Φ2(r)dra1†a2+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ1(r)dra2†a1+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ2(r)dra2†a2+2g∫Φ1∗(r)Φ1∗(r)Φ1(r)Φ1(r)dra1†a1†a1a1+2g∫Φ2∗(r)Φ2∗(r)Φ2(r)Φ2(r)dra2†a2†a2a2=∫Φ1∗(r)[−2mℏ∇2+Vext]Φ1(r)dra1†a1+∫Φ1∗(r)[−2mℏ∇2+Vext]Φ2(r)dra1†a2+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ1(r)dra2†a1+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ2(r)dra2†a2+4Ec(a1†a1†a1a1+a2†a2†a2a2)=∫Φ1∗(r)[−2mℏ∇2+Vext]Φ1(r)dra1†a1+∫Φ1∗(r)[−2mℏ∇2+Vext]Φ2(r)dra1†a2+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ1(r)dra2†a1+∫Φ2∗(r)[−2mℏ∇2+Vext]Φ2(r)dra2†a2+4Ec(a1†a1†a1a1+a2†a2†a2a2)=…Ψ≈Φ1(r)a1†+Φ2(r)a2†Splitting the integralsSplitting the sum ∫RΦ1(r)2Φ2(r)2dr≈0SimplifyingEc:=2g∫R∣Φ1(r)∣4dr=2g∫R∣Φ1(r)∣4drEJ:=−N∫RΦ1(r)[−2mℏ2∇2+Vext+2gN[Φ2(r)2+Φ2(r)2]]Φ2(r)drEJ:=−N∫RΦ(r)[−2mℏ2∇2+Vext+2gN[Φ2(r)2+Φ2(r)2]]Φ2(r)drAssumptions made:
- Ψ≈Φ1(r)a1+Φ2(r)a2, i.e. our Wave function can be approximated as a combination of creation operators.
- ⟨Φ1,Φ2⟩=0, i.e. ∫RΦ1∗(r)Φ2(r)dr=0
- ∥Φi∥2=1
- Terms proportional to ∫RΦ12(r)Φ22(r)dr are neglected.
- Terms proportional to ∫RΦ1(r)Φ23(r)dr are neglected.
- Terms proportional to ∫RΦ13(r)Φ2(r)dr are neglected.
- ∫R∣Φ1(r)∣4dr=∫R∣Φ2(r)∣4dr
- Charging energy Ec:=2g∫R∣Φ1(r)∣4dr=2g∫R∣Φ1(r)∣4dr
- Josephson coupling energy EJ:=−N∫RΦ1(r)[−2mℏ2∇2+Vext+2gN[Φ2(r)2+Φ2(r)2]]Φ2(r)dr.
- N:=a1†a1+a2†a2 .