- are distinct continuous Semimartingale indexed by .
For , we get the simpler calculation
Proof
See Theorem 9.3, in page 60, of https://courses.maths.ox.ac.uk/pluginfile.php/103016/mod_resource/content/2/LectureNotes24.pdf
Search
F(Xt1,Xt2,...,Xtd)=F(X01,X02,...,X0d)+∑i=1d∫0t∂xi∂F(Xs1,Xs2,...,Xsd)dXsi+21∑1≤i,j≤d∫0t∂xi∂xj∂2F(Xs1,Xs2,...,Xsd)d⟨Xi,Xj⟩s
For d=1, we get the simpler calculation
F(Xt)=F(X0)+∫0tF′(Xs)dXs+21∫0tF′′(Xs)d⟨X⟩s
See Theorem 9.3, in page 60, of https://courses.maths.ox.ac.uk/pluginfile.php/103016/mod_resource/content/2/LectureNotes24.pdf