Given the initial state ρ(S)⊗ρ(A), where ρ(S)=∣1⟩⟨1∣ and ρ(A)=∣ψA⟩⟨ψA∣, we want to calculate the Quantum tunnellingprobabilityPL→R(t):=⟨0∣ρ(S)(t)∣0⟩.
Solution
ρ(S)(t)=TrA[e−itHρ(S)⊗ρ(A)eitH]=∑k=0N⟨k∣e−itHρ(S)⊗ρ(A)eitH∣k⟩=∑k=0N⟨k∣e−it(−σz−γσx−Jz+ασz⊗Jz)ρ(S)⊗ρ(A)eit(−σz−γσx−Jz+ασz⊗Jz)∣k⟩=∑k=0N⟨k∣e−it(−σz−γσx−(N−2k)+α(N−2k)σz)ρ(S)⊗ρ(A)eit(−σz−γσx−(N−2k)+α(N−2k)σz)∣k⟩=∑k=0N⟨k∣e−it(−σz−γσx+α(N−2k)σz)ρ(S)⊗ρ(A)eit(−σz−γσx+α(N−2k)σz)∣k⟩=∑k=0N∣⟨k∣ψA⟩∣2e−it(−σz−γσx+α(N−2k)σz)ρ(S)eit(−σz−γσx+α(N−2k)σz)=∑k=0N∣⟨k∣ψA⟩∣2(cos(ωkt)+iωksin(ωkt)(−σz−γσx+α(N−2k)σz))ρ(S)(cos(ωkt)+iωksin(ωkt)(−σz−γσx+α(N−2k)σz))By definition of traceSubstituting our HamiltonianSince Jz∣k⟩=(N−2k)∣k⟩Cancelling the e±(N−2k) constantTaking out the ⟨k∣ψA⟩ factorSince eiθn⋅σ=cos(θ)12+isin(θ)n⋅σ whenever ∣n∣=1ωk=∣n∣=γ2+(1−α(N−2k))2
The value of interest is PL→R(t):=⟨0∣ρ(S)(t)∣0⟩. Since ρ(S)(0)=∣1⟩⟨1∣ we can ignore all terms in cos(ωkt)±iωksin(ωkt)(−σz−γσx+α(N−2k)σz) that do not involve σx. This means we only care about the ±iωksin(ωkt)γσx term, getting the result