We present here inclusion relations between different spaces. An arrow means that all spaces of type are also of type , i.e. is included in .

stateDiagram
Ba: Banach Space
Be: Bergman Space
E: Euclidean Space
F: Fock Space
Hi: Hilbert Space
Ho: Holder Space
IP: Inner Product Space
Lp: Lp Space
L2: L2 Space
Me: Metric Space
Mi: Minkowski Space
Nv: Normed Vector Space
Q: Quantum Hilbert Space
Sc: Schwartz Space
So: Sobolev Space
SS: Sobolev-Slobodeckij Space
P: Polish Space
Pe: Pseudo-Euclidean Space
V: Vector Space

P --> Me

Ba --> V
So --> V

Nv --> Me
Nv --> V

Lp --> Nv
IP --> Nv

Hi --> Ba
Hi --> IP

F --> Hi
Ho --> Hi
Pe --> Hi
Q --> Hi
L2 --> Hi

Be --> Lp
L2 --> Lp

E --> Pe
Mi --> Pe

Sc --> So
SS --> So

The above includes different spaces:

  1. Banach Space
  2. Bergman space
  3. Euclidean Space
  4. Fock Space
  5. Hilbert Space
  6. Holder Space
  7. Inner Product Space
  8. Metric space
  9. Schwarz space
  10. Sobolev Space
  11. Vector Space
  12. Quantum Hilbert Space