In,k:=∫R+xne−kx2dx,k∈R+. We use this to simplify the calculations below.
We can write the denominator as
⟨ψα∣ψα⟩=∫R(α0+α1x)2e−2α2x2dx=∫R(α02+2α0α1x+α12x2)e−2α2x2dx=∫R(α02+α12x2)e−2α2x2dx=α02∫Re−2α2x2dx+α12∫Rx2e−2α2x2dx=2α02∫R+e−2α2x2dx+2α12∫R+x2e−2α2x2dx=2α02I0,2α2+2α12I2,2α2Removing the xe−2αx2 term since it is oddSplitting the integralSince the integrands are evenUsing In,α as defined above
The 2nd derivative can be written as
∂x2∂2ψα=∂x2∂2((α0+α1x)e−α2x2)=∂x∂(α1e−α2x2+(α0+α1x)∂x∂(−α2x2)e−α2x2)=∂x∂(α1e−α2x2+(α0+α1x)(−2α2x)e−α2x2)=∂x∂((α1−2α0α2x−2α1α2x2)e−α2x2)=(−2α0α2−4α1α2x)e−α2x2+(α1−2α0α2x−2α1α2x2)(−2α2x)e−α2x2=(−2α0α2−4α1α2x)e−α2x2+(−2α1α2x+4α0α22x2+4α1α22x3)e−α2x2=(−2α0α2−4α1α2x−2α1α2x+4α0α22x2+4α1α22x3)e−α2x2=(−2α0α2−6α1α2x+4α0α22x2+4α1α22x3)e−α2x2By the product rule for derivativesBy the product rule for derivativesExpanding the product on the 2nd termJoining the 2 termsCancelling common termsCancelling common terms
The above allows us to calculate the numerator of Eα via
⟨ψα∣H∣ψα⟩=⟨ψα∣−2mℏ∂x2∂2+x2∣ψα⟩=−2mℏ⟨ψα∣∂x2∂2∣ψα⟩+⟨ψα∣x2∣ψα⟩=−2mℏ∫R+(α0+α1x)(−2α0α2−6α1α2x+4α0α22x2+4α1α22x3)e−2α2x2dx+∫R(α0+α1x)2x2e−2α2x2dx=−mℏ∫R+(α0+α1x)(−α0α2−3α1α2x+2α0α22x2+2α1α22x3)e−2α2x2dx+∫R(α0+α1x)2x2e−2α2x2dx=−mℏ∫R+(−α02α2−3α0α1α2x+2α02α22x2+2α0α1α22x3−α0α1α2x−3α12α2x2+2α0α1α22x3+2α12α22x4)e−2α2x2dx+∫R(α02x2+2α0α1x3+α12x4)e−2α2x2dx=−mℏ∫R+(−α02α2+2α02α22x2−3α12α2x2+2α12α22x4)e−2α2x2dx+∫R(α02x2+α12x4)e−2α2x2dx=mℏα02α2∫R+e−2α2x2dx+(−mℏ(2α02α22−3α12α22)+α02)∫R+x2e−2α2x2dx+(−m2ℏα12α22+α12)∫R+x4e−2α2x2dx=m2ℏα02α2I0,2α2+2(−mℏ(2α02α22−3α12α22)+α02)I2,2α2+2(−mℏ(2α02α22−3α12α22)+α12)I4,2α2By linearity of braketsUsing the integral formCancelling out a 2 factorExpanding the productRemoving the xne−2α2x2 termsSplitting the integralsUsing In,α as defined above
Using results from the Table of integrals, we know that {I0,αI2k,α=απ=2α2k−1I2(k−1),α. This gives us the result
Eα=⟨ψα∣ψα⟩⟨ψα∣H∣ψα⟩=2α02I0,2α2+2α12I2,2α2m2ℏα02α2I0,2α2+2(−mℏ(2α02α22−3α12α22)+α02)I2,2α2+2(−mℏ(2α02α22−3α12α22)+α12)I4,2α2=2α02I0,2α2+2α122α21I0,2α2m2ℏα02α2I0,2α2+2(−mℏ(2α02α22−3α12α22)+α02)2α21I0,2α2+2(−mℏ(2α02α22−3α12α22)+α12)4α23I0,2α2=2α02+2α122α21m2ℏα02α2+2(−mℏ(2α02α22−3α12α22)+α02)2α21+2(−mℏ(2α02α22−3α12α22)+α12)4α23=m12α02+2α122α212ℏα02α2+2(ℏ(2α02α22−3α12α22)+mα02)2α21+2(−ℏ(2α02α22−3α12α22)+mα12)4α23=m14α02α1+2α12α24ℏα02α22+2(ℏ(2α02α22−3α12α22)+mα02)α2+3(−ℏ(2α02α22−3α12α22)+mα12)=m14α02α1+2α12α24ℏα02α22α2+4ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12=m14α02α1+2α12α28ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12Using the above resultsExpanding the In,2α2 as functions of I0,2α2Dividing both numerator and denominator by I0,2α2Pulling the m1 outsideMultiplying both numerator and denominator by 2α2Expanding the parenthesisSimplifying common termsSimplifying common terms
In order to find the minimal Energy we need to solve 0=∂α0∂Eα=∂α1∂Eα=∂α2∂Eα. We will use the quotient rule for differentiation in a specific form: 0=(gf)′=g2f′g−gf′⇒0=f′g−gf′⇒f′g=fg′. Applying this to the ratio above, where
⎩⎨⎧∂α0∂[8ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12][2α02α1+α12α2][16ℏα0α22α2+4mα0−12ℏα0α22][2α02α1+α12α2][4ℏα0α22α2−3ℏα0α22][2α02α1+α12α2][4ℏα0α22α2−3ℏα0α22][2α02α1+α12α2]=[8ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12]∂α0∂[2α02α1+α12α2]⇓=[8ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12][4α0α1]⇓Dividing both sides by 4=[8ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12][α0α1]⇓Expanding the product=[8ℏα02α22α2−6ℏα12α22α2+2mα02−6ℏα02α22+9ℏα12α22+3mα12][α0α1]
We get from ∂α0∂Eα :
Solve the above for 0=∂α∂Eα. We should get a connection to Hermite polynomials.